当前位置:首页 > 侦探推理 > 宇宙未解之谜

宇宙未解之谜

作者:廉永清字数:76588状态:连载

第五章

地球之谜种种
地球是人类的家园,理应受到人类更多的关注。但是人类对自己的家园也不是事事明白。作为天体,地球是怎样形成的?地球为什么自转?地球上流动的江河、浩渺的大海中的水又是从哪里来的……无不在让科学家伤着脑筋,不怕有问题,就怕提不出问题,只要提出问题,解决它就有了基础。世上无难事,只要肯登攀!地球形成之谜美丽的行星关心我们这个地球,并热爱它的人,难免会提出这样的问题:我们生活的这个地球是如何形成的?具有了一定科学知识的当代人,当然不会满足上帝“创世说”这样的答案。实际上,早在18世纪,法国生物学家布封就以他的彗星碰撞说打破了神学的禁锢。然而,人们也许还不知道,随着科学的发展与进步,关于地球成因的学说已多达十几种,它们主要是:1彗星碰撞说。认为很久很久以前,一颗彗星进入太阳内,从太阳上面打下了包括地球在内的几个不同行星。(1749年)2陨星说。认为陨星积聚形成太阳和行星。1755年,康德在《宇宙发展史概论》中提出的。3宇宙星云说。1796年,法国拉普拉斯在《宇宙体系论》中提出。认为星云(尘埃)积聚,产生太阳,太阳排出气体物质而形成行星。地球的形成4双星说。认为除太阳之外,曾经有过第二颗恒星,行星都是由这颗恒星产生的。5行星平面说。认为所有的行星都在一个平面上绕太阳转,因而太阳系才能由原始的星云盘而产生。6卫星说。认为海王星、地球和土星的卫星大小相等,也可能存在过数百个同月球一样大的天体,它们构成了太阳系,而我们已知的卫星则是被遗留下来的“未被利用的”材料。在以上众多的学说当中,康德的陨星假说与拉普拉斯的宇宙星云说,虽然在具体说法上有所不同,但二者都认为太阳系起源于弥漫物质(星云)。因此,后来把这个假说统称为康德——拉普拉斯假说,而被相当多的科学家所认可。但随着科学的发展,人们发现“星云假说”也暴露了不少不能自圆其说的新问题。如逆行卫星和角动量分布异常问题。根据天文学家观察到的事实:在太阳系的系统内,太阳本身质量占太阳系总质量的9987%,角动量只占073%;而其他九大行星及所有的卫星、彗星、流星群等总共只占太阳系总质量的013%,但它们的角动量却占9927%。这个奇特现象,天文学上称为太阳系角动量分布异常问题。星云说对产生这种分布异常的原因“束手无策”。另外,现代宇航科学发现越来越多的太空星体互相碰撞的现象。1979年8月30日美国的一颗卫星P78—1拍摄到了一个罕见的现象:一颗彗星以每秒560千米的高速,一头栽入了太阳的烈焰中。照片清晰地记录了彗星冲向太阳被吞噬的情景,12个小时以后,彗星就无影无踪了。1887年,也发生了一次“太空车祸”。人们观测到一颗彗星在行经近日点时,彗头被太阳吞噬。1945年,也有一颗彗星在近日点“失踪”。苏联天文学家沙弗洛诺夫还认为,地球所以侧着身子围绕太阳转,是地球形成一亿年后被一颗直径1000千米、重达1012亿吨的小行星撞斜的……既然宇宙间存在天体相撞的事实,那么,布封的“彗星碰撞”说的可能性依然存在,于是新的灾变说应运而生。今天,关于地球起源的学说层出不穷,但地球是怎样形成的,仍是一个谜。地球转动之谜众所周知,地球在一个椭圆形轨道上围绕太阳公转,同时又绕地轴自转。因为这种不停的公转和自转地球上才有了季节变化和昼夜交替。然而,是什么力量驱使地球这样永不停息地运动呢?地球运动的过去、现在、将来又是怎样的呢?人们最容易产生的错觉,是认为地球的运动是一种标准的匀速运动,否则,一日的长短就会改变。伟大的科学家牛顿就是这样认为的。他将整个宇宙天体的运动,看成是上好发条的机械,准确无误,完美无缺。其实,地球的运动是在变化着,而且极不稳定。根据“古生物钟”的研究发现,地球的自转速度在逐年变慢。如在44亿年的晚奥陶纪,地球公转一周要412天;到42亿年前的中志留纪,每年只有400天;37亿前年的泥盆纪,一年为398天。地球转动到了一亿年前的晚石炭纪,每年约为385天;6500万年前的白垩纪,每年约为376天;而现在一年只有36525天。天体物理学的计算,也就证明了地球自转正在变慢。科学家将此现象解释为是由于月球和太阳对地球的潮汐作用的结果。石英钟的发明,使人们能更准确地测量和记录时间。通过石英钟记时观测日地的相对运动,发现在一年内地球自转存在着时快时慢的周期性变化:春季自转变慢,秋季则加快。  科学家经过长期观测认为,引起这种周期性变化,与地球上的大气和冰的季节性变化有关。此外,地球内部物质的运动,如重元素下沉,向地心集中,轻元素上浮、岩浆喷发等,都会影响地球的自转速度。除了地球的自转外,地球的公转也不是匀速运动。这是因为地球公转的轨道是一椭圆,最近点与最远点相差约五百万千米。当地球远日点同近日点运动时,离太阳越近,受太阳引力的作用越强,速度越快。由近日点到远日点时则相反,运行速度减慢。还有,地球自转轴与公转轨道并不垂直;地轴也并不稳定,而是像一个陀螺在地球轨道面上作圆锥形的旋转。地轴的两端并非始终如一地指向天空中的某一个方向,如北极点,而围绕着这个点不规则地画着圆圈。地轴指向的这种不规则,是地球的运动所造成的。科学家还发现,地球运动时,地轴向天空划的圆圈并不规整。就是说地轴在天空上的点迹根本就不是在圆周上的移动,而是在圆周内外作周期性的摆动。由此可以看出,地球的公转和自转是许多复杂运动的组合,而不是简单的线速或角速运动。地球就像一个年老体弱的病人,一边时快时慢、摇摇摆摆地绕日运动着,一边又颤颤巍巍地自己旋转着。地球还随太阳系一道围绕银河系运动,并随着银河系在宇宙中飞驰。地球在宇宙中运动不息,这种奔波可能自它形成时起便开始了。就现在地球在太阳系中的运动而言,其加速或减速都离不开太阳、月亮及太阳系其他行星的引力。人们一定会问,地球最初是如何运动起来的呢?未来将如何运动下去,其自转速度会一直慢吗? 也许,人们还会问,地球运动需要消耗能量吗?若是这样,消耗的能量又是从何而来?它若不需消耗能量,那它是“永动机”吗?最初又是什么使它开始运动的呢?存在着所谓第一推动力吗?第一推动力至今还只是一种推断。牛顿在总结发现的三大运动定律和万有引力定律之后,曾尽其后半生精力来研究、探索第一推动力。他的研究结论是:上帝设计并塑造了这个完美的宇宙运动机制,且给予了一次动力,使它们运动起来。而现代科学的回答是否定的。那么,地球,乃至整个宇宙的运动之谜的谜底究竟是什么呢?地球的海水来源之谜辽阔的海洋,一望无垠,深不可测,占地球表面近3/4的面积,拥有地球总水量9653%的海水(海水总量为13380亿立方米)。可见,海水是地球水的主体。那么,这众多的水是从哪里来的呢?地球的海水早先人们认为,这些水是地球固有的。当地球从原始太阳星云中凝聚出来时,便携带有这部分水。起初它们以结构水、结晶水等形式贮存于矿物和岩石之中。以后,随着地球的不断变化,轻重物质的分子,它们便逐渐从矿物、岩石中释放出来,成为海水的来源。譬如,在火山活动中总有大量的水蒸汽伴随岩浆喷溢出来。据此,一些人认为,这些水汽便是从地球深部释放出来的“初生水”。然而,当人们对这种所谓的火山“初生水”进行同位素研究时,却意外地发现,它们是由于地面水具有十分相似的同位素组成的,从而证明它们实际上只不过是渗入地下然后又重新循环到地表的地面水。近代兴起的天体地质研究表明,在地球的近邻中,无论是距太阳较近的金星和水星,还是距太阳更远一些的火星,甚至离地球最近的月球都是贫水的,唯有地球得天独厚,拥有如此巨量的水,这不能不使人感到奇怪。科学家对此认识不一。一些人认为,地球上的水,至少是大部分,不是地球所固有的,而是由撞入地球的彗星带来的。最近,美国的一些科学家,从人造卫星发回的数千张地球大气紫外辐射照片中发现,在圆盘状的地球图像上总有一些小黑斑,每个小黑斑大约存在两三分钟,面积约为二百平方千米。经过仔细检测分析,他们认为这些斑点是一些由冰块组成的小彗星冲入地球大气层造成的,是这种陨冰因摩擦生热转化成水蒸汽的结果。从照片还可估算出每分钟有二十颗这种小彗星进入地球。若其平均直径为十米,则每分钟就有一千立方米水进入地球,一年即可达05立方千米左右。将有两万三千亿立方米的彗星水进入地球。这个数字显然大大超过现在的海水总量。因此,科学家们的意见是否可靠,还有待验证。另一些科学家相信水是地球固有的。他们指出,虽然有证据表明火山蒸汽与热泉水是主要来自地面水的循环,但却不排斥其中可能混有少量真正的“初生水”。据计算,如果过去的地球一直维持与现在火山活动时所释放出来水汽总量相同的水汽释放量,那么几十亿年来的累计总量将是现在地球大气和海洋总体积的一百倍。所以他们认为,其中99%是周而复始参加不断循环的水,但却有1%是来自地幔的“初生水”,而正是这部分水构成了海水的来源。有的学者认为,金星、水星和月球上原先并不是没有水,而是有的质量太小(月球和火星),没有足够的引力,致使原有的水全部逃逸;有的表面温度太高(金星),也无法维持水的存在。地球由于条件适中,就使原有的水能够长期保存下来。因此他们认为,不能从地球近邻目前的贫水状态来推论地球早期也是贫水的。最近,我国学者董妙生先生在《多四季论》一书中提出“大自然存在多四季规律”的假说。“多四季假说的中心内容是:地球在椭圆形轨道上围绕太阳公转,形成四季,周期为一年。在它参于太阳系、围绕太阳系和其近星系的质心公转,乃至围绕银河系的银心及更大星系公转时,出于与不同强度的热源距离、辐射角的变化而形成多种不同时期不同程度的大、中、小四季变化。较大四季中包含着若干个较小四季,较小四季的冷暖程度由它处在较大四季的那一个阶段来决定。这个规律对地球适用,对整个宇宙其他星体都适用。并由此引出生力气圈周期性地从一个星球转移到另一个星球。按此假说,自地球形成至今的46亿年间,生物圈曾数次周期性地从地球转移到另一个星球,又周期性地像候鸟回归那样循回到地球上来。这其中自然也包括海水地球表面70%都是水的数度干涸和高涨。用此假说,正可以解决以往“天外来水”说和“地球固有”说都未能解决的难题。然而,假说毕竟尚待检验。今天,海水是从哪里来的问题仍在让许多优秀科学家伤着脑筋。
金星之谜
金星是人类所关心的仅次于月亮的天体,美国和前苏联曾发射飞行器光顾金星,因此人类对金星的了解相对多一些。我们中国现在开始了探月工程,相信探测金星的行动也随之不远。那时或许许多谜就可以由中国人给出答案了。金星金星是八大行星之一,按离太阳由近及远的次序是第二颗。它是离地球最近的行星。中国古代称之为太白或太白金星。它有时是晨星,黎明前出现在东方天空,被称为“启明星”;有时是昏星,黄昏后出现在西方天空,被称为“长庚星”。金星是天空中最亮的星星,仅次于太阳和月亮。在空中,金星发出银白色亮光,璀璨夺目,因而有“太白金星”之说,西方人认为爱与美的女神维纳斯就住在金星上。金星最亮时,亮度是天空中最亮的恒星——天狼星的十倍。金星如此明亮的原因有两点。一方面,是因为它包裹着厚厚的云雾,这层云雾可以把75%以上的光反射回来,反射日光的本领很强,而且对红光反射能力又强于蓝光,所以,金星的银白光色中,多少带点金黄的颜色。另一方面,金星距离太阳很近,除水星以外,金星是距太阳第二近的行星,它到太阳的距离是10800万公里,太阳照射到金星的光比照射到地球的光多一倍,所以,这颗行星显得特别耀眼明亮。金星比地球离太阳近,绕日公转轨道在地球的内侧,这点与水星很类似。但金星的轨道比水星轨道大一倍,所以,金星在天空中离太阳就要远些,容易被看到。金星被我们看到时,它与太阳距角可以达到47°。也就是,金星在太阳出来前三小时已升起,或者在太阳下落后三小时出现在天空。这样很多地区的人很容易看到它。宇航时代的开始,意味着金星神秘时代的结束;美国和苏联前后发射二十多个金星探测器,频繁地对金星大气和金星表面进行探测。首先是苏联的“金星1号”,这是人类历史上发射的第一艘金星探测飞船,在1961年2月12日升空,但并不成功。首度成功观测金星的是美国的“水手2号”,于1962年8月27日升空,同年12月14日通过了距离金星34830公里的地方探测金星。首次在金星大气中直接测量的是苏联的“金星4号”,于1967年10月18日打开降落伞,降落于金星大气中。首次软着陆成功的是苏联的“金星7号”,它于1970年 12月15日降落于金星表面,送回各种观测资料。苏联从1961年开始,直至1983年,共发射飞船16艘,除少数几艘失败外,大多数都按原计划发回不少重要资料。美国在1962年发射“水手2号”以后,又在1978年5月 20日和8月8日先后发射“先驱者金星”1号和2号,其中“先驱者金星”2号的探测器软着陆成功。至此,美国也先后有六个探测金星的飞船上天。金星的天空是橙黄色的。金星的高空有着巨大的圆顶状的云,它们离金星地面48公里以上,这些浓云悬挂在空中反射着太阳光。这些橙黄色的云是什么呢?原来竟是具有强烈腐蚀作用的浓硫酸雾,厚度有20~30公里。因此,金星上若也下雨的话,下的便全是硫酸雨,恐怕也没有几种动植物能经得住硫酸雨的洗礼。金星是个不毛之地。金星的大气又厚又重。金星的大气不仅有可怕的硫酸,还有惊人的压力。我们地球的大气压只有一个大气压左右。在金星的固定表面,大气压是九十五个,几乎是地球大气的一百倍,相当于地球海洋深处一千米的水压。人的身体是承受不起这么大的压力的,肯定在一瞬间被压扁。金星的大气中主要是二氧化碳。二氧化碳占了气体总量的96%,而氧气仅占04%,这与地球上大气的结构刚好相反,金星的二氧化碳比地球上的二氧化碳多出一万倍,人在金星上会喘不过气来,一准会被闷死。这里常常电闪雷鸣,几乎每时每刻都有雷电发生,让你掩耳抱头,避之不及。金星是真正的“火炉”。地球上40℃的高温已经让人很难受了,但金星表面的温度高得吓人,竟然高达460℃,足以把动植物烤焦,而且在黑夜并不冰冻,夜间的岩石也像通了电的电炉丝发出暗红色光。金星怎么会有这么恐怖的高温呢?这也是二氧化碳的“功劳”。白天,在强烈的阳光照射下,金星的地表很热,二氧化碳具有温室效应,就是说大气吸收的太阳能一旦变成了热能,便跑不出金星大气,而被大气挡了回来,二氧化碳活像厚厚的“被子”,把金星捂得严密不透风,酷热异常。再加上金星吸收的热量更是越聚越多,热量只进不出,从而达到了460℃的高温,比最靠近太阳的水星白昼的温度还要高(水星约430℃)。温室效应使得昼夜几乎没有温差,冬夏没有季节变化。因而金星上没有四季之分。其实,地球上也有温室效应,只不过地球大气中二氧化碳只有33%,所以地球温室效应远不如金星的强烈。但是,就是那么点二氧化碳,已可使地球的平均温度达到17℃。近年来,工业污染加剧,致使地球上二氧化碳有增加的趋势,地球的气候也逐渐有变暖的趋向。如果严重时,两极冰川融化,海平面上升,一些陆地将被淹没。这该是地球上引起高度重视的问题,因为我们不想成为第二个金星。金星上如此恶劣的环境,是以前的人们不曾想到过的。这位曾经是地球“孪生姐妹”的金星,一旦面纱撩开,即刻让人们对金星上存在生命的幻想破灭了。不过,人们头脑中还有一丝希望,那就是,金星上有水吗?金星有很少量的水,仅为地球上水的十万分之一。这些水分布在哪里呢?由“金星13号”和“金星14号”探测表明,在硫酸雾的低层,水汽含量比较大,为002%,而在金星表面大气里有002‰。金星表面找不到一滴水,整个金星表面就是一个特大的沙漠,在每日的大风中尘沙铺天盖地,到处昏昏沉沉。  金星地表与地球有几分相似。金星因为有大气保护,环形山没有水星、月球那么多,地面相对比较平坦,但是有高山。山的高度的最大落差与地球相似,也有高大的火山,延伸范围广达30万平方公里。大部分金星表面看起来像地球陆地。不过,地球的陆地只有十分之三,其余十分之七为广大海面。金星的陆地占六分之五,剩下的六分之一是小块无水的低地。至今金星表面还没有水。金星自转是卫星中最独特的。自转与公转方向相反,是逆向自转。换句话说,从金星上看太阳,太阳是从西方升起,在东方落下。金星逆向自转,是科学家用雷达探测金星表面根据反射器回来的雷达波发现的,还知道金星自转非常缓慢,每243天自转一周。如果我们在金星上观看星星,每过243天,才能在天空看到同一幅恒星图景,如我们以太阳为基准测量金星自转周期,仅仅是1168个地球日。因为,在这段时间,金星沿公转轨道前进了很大一段距离,在这243天中,可以看到两次日出和日落。所以,一个金星日是1168个地球日,金星上的一天等于地球上116天多。木星的巨大红斑
木星是八大行星中最大的一颗。人类曾数次实地考察过木星上空,美国发射的航天器解开了从地球就可观察到的木星红斑之谜。可是木星红斑为什么经久不息?形成红斑的大气旋又从何而来?比起对月球的探测,木星还是显得太遥远了。人类只能先近后远,循序渐进。木星木星,是离太阳远近的第五颗行星,而且是八大行星中最大的一颗,比所有其他的行星的合质量大两倍(地球的318倍)。木星绕太阳公转的周期为4332589天,约合1186年。木星除了色彩缤纷的条和带之外,还有一块醒目的标记,从地球上看去,就成一个红点,仿佛木星上长着一只“眼睛”,大红斑形状有点像鸡蛋,颜色鲜艳夺目,红而略带棕色,有时又鲜红鲜红。人们把它取名为大红斑。很早以前,木星大红斑鲜明的颜色已引起人们注意。意大利天文学家卡西尼在1665年首先觉察到,木星上有斑痕,并以此红斑为标志,测出了木星自转的周期,是在9时50分到9时56分之间的范围。这与现在公认的赤道部分的自转周期9时50分30秒相当吻合,这在当时天文观测仪器相当简陋的情况下是很不简单的成就。木星红斑自那时以来,三个多世纪过去了,人们一直看到这块红斑虽然颜色有浓有淡、大小有增有减,但从未消失过,成为木星上醒目的永久性标志。这也是科学家观测、研究、讨论的课题。大红斑十分巨大,南北宽度经常保持在14万公里,东西方向上的长度在不同时期有所变化,最长时达四万公里。也就是说,从红斑东端到西端,可以并排放下三个地球。一般情况下,长度在两千至三千公里,大红斑在木星上的相对大小,就好像澳大利亚在地球上那样。大红斑之“红”也有特色,它的颜色常常是红而略带褐色,变化也是有的。20世纪20年代到30年代,大红斑呈鲜红色,从未这么好看过。1951年前后,也曾出现淡淡的玫瑰红颜色;大部分时间,它的颜色比较暗淡。关于大红斑的颜色,有不同见解。有的提出那是因为它含有红磷之类的物质;有人认为,可能是有些物质到达木星的云端以后,受太阳紫外线照射,而发生了光化学反应,使这些化学物质转变成一种带红棕色的物质。总之,这仍然是未解之谜。人们在地球上隔着6亿公里对着大红斑看了三百多年,却不知怎么解释这种红斑。到20世纪70年代,先有1972年、 1973年4月和6月“先驱者10号”、“先驱者11号”相继升空。在1973年12月和1974年12月近距离观测了木星,紧步后尘的又有1977年8月20日和9月5日发射的“旅行者2号”、“旅行者1号”,分别于1979年7月和1979年3月从木星上空掠过。对红斑进行详细察看。它们发现,它是一团激烈上升的气流,即大气旋。它不停地沿逆时针方向旋转,像一团巨大的高气压风暴,每十二天旋转一周。这巨大风暴气流可谓“翻江倒海”,“翻天覆地”。从人类认识它以来狂暴地乱了三个多世纪,真让人乍舌,可以说是一场“世纪风暴”。那么,它是靠什么法力能长盛不衰、长期肆虐呢?原来,大红斑以自己实力占尽地利之便。巨大的旋涡像夹在两股向相反方向运动的气流中,摩擦阻力很小,如果大红斑比现在要小得多,那么“阻碍”的力量便相应地要大得多,这团风暴要不了多久便会平息。大红斑不是独霸木星的风暴,也有小姊妹。“先驱者10号”1973年12月,也发现过有小红斑,其扩大程度直逼大红斑,然而“先驱者11号”1974年 12月飞过时小红斑卫星拍摄却已经消失了。小红斑从形成到消逝,只用了短短两年时间,规模上也只与地球风暴差不多,这跟大红斑不能相比。也有人认为大红斑长久不息应该还有别的原因。总之,关于大红斑,还需继续观测、研究,探索尚存的未解之谜。木星究竟是恒星还是行星?
中国古代有弈射九日的传说,现在又有科学家提出木星有可能成为太阳星系中的第二个太阳,这就不能不使地球人备加关心了。因为这直接关系到人类的生死存亡。好在如果木星真的能变成恒星,也要等到30亿年之后,可谓来日方长。木星
木星难道仅仅是行星吗?为什么不能把它看作是颗未来的恒星,看作是正在向恒星方向发展的天体呢?读者也许会惊讶:这样提问题是否太荒唐了?上世纪80年代初,苏联科学家苏切科夫提出木星也许是一颗正在发展中的恒星这种新见解之后,确实遭到了不少非议。但是,苏切科夫的意见也并非“空中楼阁”,毫无依据。他的主要观点是:木星内部在进行热核反应,它有自己的热核能源,应该归到“能自己发热、发光”的恒星类天体里去。事情真是那样子吗?木星离太阳比地球远得多,它接受到的太阳辐射也少得多,表面温度理所当然要低得多。根据计算得出的结果,木星表面温度应该是零下168℃。可是,地面观测得出来的温度是零下 139℃,与计算值相差近30℃,这无论如何不可能是由误差造成的。让探测器在木星附近进行测量,准确程度理应更高些。“先驱者11号”于1974年12月飞掠木星时,测得的木星表面温度为零下148℃,仍比理论值高出不少,说明木星有自己的内部热源。木星内部结构图对木星进行红外线测量也反映出类似的情况。如果木星内部没有热源,它吸收到的热量和支出的应该达到平衡,地球和水星等类的行星的情况正是这样。木星却不然,它是支大于入,约大15~20倍。这超支的能量从哪里来呢?很明显,只能由它自己内部的热源予以补贴。木星是一颗以氢为主要成分的天体,这与我们的地球有很大的差异,而与太阳相似。木星与太阳这两个天体的大气,都包含约90%的氢和约10%的氦,以及很少量的其他气体。关于木星的内部结构,现在建立的模型认为它的表面并非固体状,整个行星处于流体状态。木星的中心部分大概是个固体核,主要由铁和硅组成,那里的温度至少可以有30000℃。核的外面是两层氢,先是一层处于液态金属氢状态的氢,接着是一层处于液态分子氢状态的氢;这两层合称为木星幔。再往上,氢以气体状态成为大气的主要成分。具有如此结构的天体,其中心能否发生热核反应而产生出所需的能量来呢?许多人认为是可疑的,甚至是不可能的。况且木星的质量并没有达到太阳质量的007。比起太阳来,木星确实有点“小巫见大巫”。称“霸”其他行星的木星,体积只有太阳的千分之一,质量只及太阳的1/1047,即约0001个太阳质量,而中心温度也只有太阳的五百分之一。有人认为,这并不妨碍木星内部存在热源,因为它是在木星形成过程中产生并积累起来的。苏联学者苏切科夫等的意见是颇为新颖的。他认为木星内部正进行着热核反应,核心的温度高得惊人,至少有28万度,而且还将变得越来越热,释放更多的能量。释放的速度也将进一步加快。换句话说,木星在逐渐变热,最终会变成一颗名副其实的恒星。我国学者刘金沂对行星亮度的研究,从一个侧面提供了证据。他发现在过去很长的一段历史时期里,水星、金星、火星和土星的亮度都有减小的趋势,唯独木星的亮度在增大。如果前述四行星的亮度减小与所谓的太阳正在收缩、亮度在减弱有关,那么,木星亮度增大的原因一定是在木星本身。刘金沂得出的结论是:在最近的两千年中,木星的亮度每千年增大约0003等。这无异对苏切科夫等的观点作了注释。此外,太阳不仅每时每刻向外辐射出巨大的能量,同时也以太阳风等形式持续不断地向外抛射各种物质微粒。它们在行星际空间前进时,木星自然会俘获其中相当一部分。这样的话,一方面木星的质量日积月累不断增加,逐渐接近和达到成为一个恒星所必需的最低条件;另一方面,在截获来自太阳的各种粒子时,木星当然也就获得了它们所携带的能量。换言之,太阳以自己的日渐衰弱来促使木星日渐壮大,最后达到两者几乎并驾齐驱的程度,使木星成为恒星。这样的过程据说大致需要30亿年的时间。那时,现在的太阳系将成为以太阳和木星为两主体的双星系统;也有可能木星在其“成长”的过程中,把一些小天体俘获过来,建立以自己为中心天体的另一个“太阳系”,与仍以现在太阳为中心天体的太阳系,平起平坐。不管是哪种形式的变化,目前太阳系的全部天体,包括大小行星乃至彗星等,都将有较大幅度地变动。这种大变迁会带来什么后果呢?特别是地球和地球上的人类该怎么办呢?一种观点认为,事物发生变化那是必然的,至于是否像前面提到的那样,木星变成恒星那样的天体,这只是一家之见,何况还有30亿年的漫长岁月呢!像木星内部结构之类的问题,本来就是一个假说不少、争论颇多的领域。苏切科夫等人的观点只不过使得争论更加热烈而已。在目前的观测水平和理论水平不完善的情况下,像“木星是否正在向恒星方向演变”之类的重大自然科学之谜,不仅现在无法解答,即使是在可以预见到的将来,恐怕也未必能理出个头绪。在很长的一段历史时期里,它无疑将会一直成为科学家们孜孜不倦探讨的课题。

(<-快捷键)上一章

目录

下一章(快捷键->)

目录

阅读设置

背景色:

字体大小: 14px

页面宽度: 1200px

返回顶部