当前位置:首页 > 侦探推理 > 海洋

海洋

作者:雅风斋字数:78495状态:连载

第二章 神秘莫测的海洋现象

第 二 章  神秘莫测的海洋现象
海洋是一个巨大的谜团,虽然我们已经了解了很多,但却远远不够。如果不能揭开这些秘密,我们就不能够更好的利用好、保护好海洋。
 
海水温度的特点
 吸热比陆地多的海水
盛夏骄阳似火,把大地上的一切都烤得烫烫的。此时,人们都愿意到海滨避暑。在那里,你会身不由己地要投到碧蓝碧蓝的大海的怀抱。
但是你不能在大海里泡得时间太长,不能游得太远,否则你会冷得牙齿打颤,嘴唇发乌,浑身发抖的。为什么同样处在炎炎的烈日之下,沙滩就炙热烫人,而大海却令人打颤?
人们研究太阳辐射的情况发现,到达地球表面的太阳辐射能,大部分都被地球吸收了,只有一小部分反射回到空中。而和陆地比较起来,海洋贪婪地吸收着太阳送来的热量,不愿意把好不容易到的太阳能量放弃掉。
 海水为什么那么冷
既然海水吸热多,为什么海水没有沙滩热?
原来,陆地是一种不能很好传热和储存热量的固体,既不透明又不流动。太阳即使再厉害些,也晒不透它。因为不能很好地传热,晒了一整天,它所吸收的热量还只是集中在不到一毫米厚的表层内,也就是像沙滩那样的厚度中。热量无法有效储存,自然就加在了生活在上面的人身上。到了夜间,储存的那点热量很快就会散失掉。所以,即使白天很热,到了清晨还是很凉。
而海上的情况就大不一样了,海水的吸热能力强,所以热能都被吸收了。那么,既然热能被海水吸收了,海水为什么还那么凉呢?
原因就在于海水虽然吸热能力强,但是海洋面积太大了,到达地球的大部分太阳能量被海洋吸收并储存起来,海洋就成为了地球上的巨大的热能仓库。举个形象点的例子,在盛夏季节,如果只是在骄阳下放一盆水,因为水少,过几个小时,水就会很温暖,太阳能热水器就是这个原理。海水之所以凉,主要是水量太大。
 海洋调节气候
这样一来,地球上热量的供应就主要由海洋来调节。海洋通过海水温度的升降和海流的循环,并通过与大气的相互作用影响地球气候变化。
 
海浪的美丽与威力
 美丽的海浪
对于去海边旅游的人来说,海浪无疑是最令人兴奋的了。一波一波的浪头冲过来,击打在岸边的礁石上,发出巨大的轰鸣声和白色的水花,令人震撼不止,也感到无限的美的享受。
 危险的海浪
不过,如果你那个时候在海里游泳,或是在岸边小坐,就一点也不好玩了。巨大的海浪随时会把你卷入海中,对你的生命构成威胁。
而对于在海中航行的船舶而言,海浪也是一个巨大的威胁。大浪会轻易将一条小船掀翻,将大船损坏。1966年,“米开朗奇罗”号油船在狂风怒号,浪高9米的大西洋上航行时,夜里突见一个巨浪渐渐升起。据船长估计,约有18米高。巨浪以雷霆万钧之力打到船上,把船首8厘米厚的钢板打扁,在桥楼上撞开了一个9米乘18米的大洞,冲歪了轮船内侧几块舱壁的钢板,还死了三个人。
即使船不会沉没,坐船的人也会头晕目眩,感到恶心不止。
 神奇的海浪
看海浪的人都会觉得海浪很神奇,有时很富诗意;有时来势险恶,不管在什么时候,总有神秘莫测之感。
一连几天无风时,空气中的一切都不动,可是海上的破碎波越来越大。波浪默默地越过大海,一个接一个滚滚前来,究竟是来自多远的地方呢?巨浪究竟能有多大?危险性又如何?
长久以来,人类一直都难以解答这些问题。到了近几十年,海洋学家才能告诉我们,波涛怎样在大海诞生,诞生后要走很远很远,才抵达岛屿沿岸处或大陆沿岸。
首先,人们可能问波浪是什么?有人可能认为,波浪是在海面上移动的大片海水。绝不是这样,只要细心观察随波漂来的一片漂木就明白了。先见漂木迎着前来的波浪移前少许,随浪升高,然后又跟着小浪移前少许便落下。波浪过后,漂木仍留在原位。因此,有关波浪的第一件事实是,它和海流不同。海流确实带着水前进,而波浪只是穿水而过。波浪不外乎是能的脉冲,借水分子的振荡在海水中传送。
最常见的波浪,全都因风而起。海啸则是地震所造成。海风吹入水面翻起涟漪,涟漪不断堆起,风力把它们越推越高,同时振荡越来越深。
请注意“越来越深”这句话。风吹起的涌浪吸收了风的能,其中一半是在海面之下。在浅水的沿岸海底潜水的人,见得到这种能的力量,涌浪在上边的海面上经过时,水中的海藻来回摆动。
 巨浪的形成
风浪的大小,受风速、风吹的时间长短、海面阔窄等因素影响。波浪的稳定度,也就是波浪的陡度,决定于波长(前后两个波浪波峰间的距离)。一个波浪如果高度超过其波长约1/7,就要散开,形成白帽浪。在风暴中形成的波涛,高达12~18米的,在大海上并不罕见。更高的“滔天巨浪”也曾有人遇到过。
科学家解释这样的巨浪时说,海是许多不同风暴形成的波浪汇集之地。在大海上任何一点看到的波浪,有遥远地区旧风暴形成的涌浪,也有在较近海域产生的涌浪。这些来自不同方向的波浪相遇时,力量不是抵消,就是加强。一个波浪的波峰,往往会吞噬另一个波浪的波谷,二者的力量就互相抵消,在湍流之中呈现一片风平浪静的景象。但是有时候,两个、三个甚至四个波峰会加在一起,在短短一两秒钟内重叠起来形成一个巨浪。
冲上岸边海滩的波浪,一般来说,要比在海洋中的小得多。北美沿海的自记测波仪录得,约有80%的破碎波高度不到1.2米,只有冬天风暴季节的波浪才达到3米高。夏威夷欧胡岛的背面,一向以有拍岸巨浪著称。在那里,能掀起6米波浪的涌浪,已经可以写入记录簿了。
在北美北部太平洋沿岸一带,冬季的破碎波往往高达10到12米,世界各地最高的波浪也不过如此。
波浪能远涉重洋,渡过大海。掀起波浪的风一旦平息之后,波浪就不再与风及湍流冲撞,而变为正常状态的“海浪”——在一定的风速下,海水所起的最大波浪。从此以后,波浪就成了徐徐荡漾的涌浪,横过大海,向遥远的海岸涌去。波浪也和涌浪一样,可以把风暴产生的能传送半个地球那么远。
能够“粘”住船的海
 可怕的经历
100多年前,在大西洋西北洋面上,有一艘渔船正在进行捕捞作业。渔船把网撒到海里,便拖着渔网前进。突然,船速明显降低,仿佛从沙滩上奔向大海的人一下水就走不动似的。
船员们大吃一惊,脑海里立刻闪现出一系列海怪的传说,莫非自己的船被海怪攫住了,恐怖感立刻笼罩全船。船长命令全速前进,可是任凭机器怎么吼,螺旋桨怎么转,船却一步也不能移动了。会不会是渔网拖住了什么东西?于是船员们砍断了渔网,仍无济于事。
正当船员们绝望的时候,突然有人发现渔船开始动弹了,开始是慢慢移动,接着越来越快,终于脱离了这个令人恐怖的地方。
渔船返港了,船员们向亲人诉说着这次奇遇。可船为什么会被海水“粘”住?他们除了解释是海怪作祟外,谁也说不清到底是怎么回事。无独有偶,海水“粘”船的事也被挪威著名探险家南森遇到了。
自小就立志做一个北极探险者的南森,为了证实北冰洋里有一条向西的海流经过北极再流到格陵兰岛的东岸,不顾亲人的劝阻,设计制造了一条没有龙骨、没有机器的漂流船。
1893年6月19日,南森率船从奥斯陆港出发向北极方向驶去。8月29日,当船行驶到俄国喀拉海的泰梅尔半岛沿岸时,突然走不动了,船被海水“粘”住了。
顿时,船上一片混乱。毕竟是探险家,南森却没有一丝惊慌的表情。他环视了海面,只见四周风平浪静,离岸也很远,不是搁浅,也没有触礁。那么,问题出在哪里呢?南森想,可能就是碰上传说中的“死水”了。他认真测量了不同深度的海水,记录下了观测的结果。
不一会儿,海上刮起了风,“弗雷姆”号风满帆张又开始移动。船员们欢呼雀跃,庆幸自己死里逃生。此时,南森仍在琢磨着。他发现,当船停在“死水”区不能挪动一步时,那里的海水是分层的,靠近海面是一层不深的淡水,下面才是咸咸的海水。他想,船被海水“粘”住的原因可能在此。
 其中的奥妙
南森回国后,终于弄清了其中的道理。原来,海水的密度各处不同。一般说来,温度高的海水密度小,而温度低的海水密度大;盐度低的海水密度小,而盐度高的海水密度大。如果一个海域里有两种密度的海水同时存在,那么,密度小的海水就会集聚在密度大的海水上面,使海水成层分布。这上下层之间形成一个屏障,叫“密度跃层”。
这“密度跃层”有的厚达几米。这种稳定的“密度跃层”可以把海水分成两种水团,分别位于跃层的上下,并以跃层作为界面。如果有某种外力(如月亮、太阳的引潮力,风、海流的摩擦力等)作用在界面上,界面就会产生波浪。这种波浪处于海面以下,人的肉眼完全看不见,因此称之为内波。
 “冲淡水”的形成
在海岸附近,江河人海口处,常常形成“冲淡水”,盐度和密度显著降低。它们的下面如果是密度大、盐度高的海水,就会形成“密度跃层”。夏季寒冷地区海上浮冰融化了,含盐低的水层浮动在高盐、高密度的海水之上时,也会形成“密度跃层”。南森遇到的就是后一种情况。
一旦上层水的厚度等于船只的吃水深度时,如果船的航速比较低,船的螺旋桨的搅动就会在“密度跃层”上产生内波。内波的运动方向同船航行方向相反,内波的阻力就会迅速增加,船速就会减低下来。当两者大致相当的时候,船就像被海水“粘”住似的寸步难行。
当年南森的“弗雷姆”号被“粘”住时,船速就由4.5节突然降低到1节。后来,是风的推力超过了内波的“粘”力,才使南森的船脱险。“死水”区的内波,由于水质运动的方向不同,不但会把渔船的渔网拧成一缕,还会使船舵失灵,甚至会使船只迷航。
科学家经过计算,得出内波的速度一般在2节左右。如果航速大大超过内波速度时,海水就无法把船“粘”住了。如今舰船速度大大超过内波速度,因而海水“粘”船现象就成为了历史。
 
  海水中的“挡箭牌”和“声音高速公路”
 潜艇的“挡箭牌”
虽然“密度跃层”已不能“粘”住现代舰船,但对“密度跃层”的研究却极有军事价值。“密度跃层”厚达几米,海水的密度增大,仿佛筑起一道厚厚的“墙”。声呐发出的声波碰到这堵“墙”,就被反弹回去。当潜艇遇到水面舰艇的追捕时,如果钻到“密度跃层”下面,水面舰艇声呐发出的声波穿透不了“密度跃层”,就会成为“聋子”和“瞎子”,而潜艇却能安全撤离或发起反击。
 “声音高速公路”
在“密度跃层”中,跃层的上下界面使声波产生折射,造成声波只能在“密度跃层”中向前传播,于是形成了一条水下“声道”。声波在声道中衰减很少,可谓畅通无阻,传播的速度和距离令人惊叹。1960年3月1日,在澳大利亚西南附近海中投下6枚深水炸弹,爆炸声波在水下1200米的“声道”里向外传播,绕过好望角,折向赤道,经3小时43分钟,被北半球百慕大群岛的水声站收到。爆炸声波传播绕地球半圈,并无明显减弱。可见声道真是声波传播的“高速公路”。
利用“密度跃层”中的“声道”,可以进行远距离水下通讯。
例如在海军基地装上水下测听和通讯系统,远航的潜艇装备相应的设备,就可以与基地指挥机关进行通讯联络,最大通讯距离可达4000多千米。
 海洋生物的变化
另外,由于“密度跃层”如屏障横亘海中,影响了上下层海水交换,造成下层海水缺乏溶解氧,再加上硫细菌使沉积海底的大量有机物产生高浓度的硫化氢气体,海洋生物难以在下层海水中生存。因此,“密度跃层”强烈的地方,生物主要生活在上层海水中。而且,内波引起的水文变化,迫使海洋生物活动的区域和范围也发生变化。可见,对“密度跃层”的研究,在军事和经济上都有重要意义。
潮起又潮落
 涨潮和落潮
在海滨,我们可以看到大海潮起潮落的景象。住在海边的人都看到过,涨潮的时候,海水泛起白沫,呼啸着向海滩上涌来,淹没大片大片的沙滩;退潮的时候,海水又悄然无声地退回到海滩以外很远的大海里。潮涨时,只见海浪吐着白色的泡沫,翻腾着向岸边扑来,海水把沙滩淹没了。人们被迫后退。过了一些时间,海浪失去了势头,又悄悄地遁去,那条宽阔平坦的沙滩又露出了水面,沙滩上面留下一簇簇刚刚被海浪推上来的大大小小的贝壳。海水都按照差不多相同的时刻涌上来,退下去。
人们把这种海水定时涨落叫作涨潮和落潮。白天的海水涨落叫潮;夜晚的海水涨落叫汐,人们就把海水水位有规律的涨落叫作潮汐现象。
 时间如此精确的原因
海水为什么能遵守时间涨落呢?
这是月亮和太阳对海水的吸引造成的。著名的万有引力定律指出,宇宙中一切物体之间都是相互吸引的,引力的大小同这两个物体质量的乘积成正比,同它们之间距离的平方成反比。
月亮和太阳对地球的引力,在陆地和海洋两部分的任何一点上都是一样的。但是,由于陆地地面是固体的,引力带来的表面变化不容易看出来,而海水是流动的液体,在引力的作用下,它会向吸引它的方向涌流,所以形成明显的涨落变化。
 月亮的影响
太阳虽然比月亮大得多,可是它和地球之间的距离毕竟太远了,所以月亮对海水的吸引力要比太阳大得多。月亮的引力就使海水涨落。
地球上,面对月亮的这一面由于接受月亮的引力,引力的方向是指向月亮中心的。而背着的一面,则产生了相应的变化,使得面对月亮或背着月亮的地球两侧的海洋水位升高,出现涨潮。与此同时,位于两个高潮之间的部位的海水,由于向涨潮的地方涌去,会出现落潮。
地球在不停地自转,对某一个地方来说,每天都要面向月亮一次和背向月亮一次。所以,一般来说,要出现两次涨潮和两次落潮。
太阳对海水的引力虽然小,可是也有一定的影响。主要由于月亮的引力而引起的潮汐现象,因为太阳引力的参与,太阳引力和月亮引力共同发挥作用,就使得海水的涨落过程变得复杂了。
 大潮、小潮和混合潮
农历每月初一或十五的时候,地球和月亮、太阳几乎在同一条直线上,日、月引力之和使海水涨落的幅度较大,叫大潮;而当农历初八和二十三的时候,地球、月亮、太阳三者之间的相对位置差不多成了直角形,月亮的引力要被太阳的引力抵消一部分,所以海水涨落的幅度比较小,叫小潮。
涨潮落潮的次数、潮的大小,还要受海岸地形、气候等各种因素的影响。所以,有的地方一天有两次涨潮、两次落潮;有的地方只有一次涨潮、一次落潮。前者叫半日潮,后者叫全日潮。还有的地方潮水涨落情况要更复杂一些。如果两个相邻的高潮之间和相邻的低潮之间,时间不均等,这叫做混合潮。
 天下闻名的钱塘大潮
浙江省杭州湾的钱塘江潮就是由于受海岸地形的影响而形成的一种特殊类型的涌潮。钱塘江口宽100千米,而江道河面仅宽四五千米,呈喇叭口状。涨潮时,海水溯河而上,受两岸渐狭的江岸束缚,形成涌潮。河口底部因泥沙沉积而隆起形成的“沙堤”,更激起潮水上涌,形成雄踞江面的一道水墙,怒浪排空,如万马奔腾,十分壮观。
 潮汐发电
人们认识了海水按一定时间涨落的规律,就可以利用潮汐的能量修建电站,提供无污染的能源。世界上规模最大的潮汐电站修建在法国朗斯河上。这个潮汐电站于1961年开始建设,1967年竣工,发电能力24万千瓦。我国在山东省乳山县也成功地修建了实验性的潮汐电站。
洋流的产生
海里的水总是依照有规律的明确形式流动,循环不息,称为洋流。其中比较有名的是墨西哥湾流,沿北美洲海岸北上,横过北大西洋,调节北欧的气候。北太平洋海流是一道类似的暖流,从热带向北流,提高北美洲西岸的气温。
 暖流和寒流
洋流在分类上分为暖流和寒流。
暖流,从低纬度流向高纬度的洋流。暖流的水温比它所到区域的水温高。对沿途气候有增温、增湿作用。
寒流,从高纬度流向低纬度的洋流。寒流的水温比它所到区域的水温低,能使经过的地方气温下降,少雨。
 墨西哥湾暖流
墨西哥湾暖流,简称湾流,是大西洋上重要的洋流,世界大洋中最强大的暖流,也是最大的暖流。起源于墨西哥湾,经过佛罗里达海峡,沿着美国的东部海域与加拿大纽芬兰省向北,最后跨越北大西洋通往北极海。在大约北纬40°、西经30°左右的地方,墨西哥湾流分支成两股分支,北分支跨入欧洲的海域,成为北大西洋暖流;南分支经由西非,重新回到赤道。
 西风漂流
西风漂流是地球上最大的,也就是势力最强的寒流。其范围在南半球40度至60度之间,是全球性的,经过太平洋、大西洋和印度洋。由于位置靠近南极大陆,所以海水温度低。至于为什么叫西风漂流,是因为在这个纬度上常年盛行西风,方向也是由西向东的。
盛行风是使海流运动不息的主要力量。海水密度不同,也是海流成因之一。冷水的密度比暖水高,因此冷水下沉,暖水上升。基于同样原理,两极附近的冷水也下沉,在海面以下向赤道流去。抵达赤道时,这股水流便上升,代替随着表面海流流向两极的暖水。
岛屿与大陆的海岸,对海流也有影响,不是使海流转向,就是把海流分成支流。不过一般来说,主要的海流都是沿着各个海洋盆地四周环流的。由于地球自转影响,北半球的海流以顺时针方向流动;南半球的流动方向则相反。
 
海底玻璃之谜
我们每天都要与各种各样的玻璃制品打交道,如玻璃杯、玻璃灯管、玻璃窗户等等。普通的玻璃,以花岗岩风化而成的硅砂为原料,在高温下熔化,经过成型,冷却后便成为我们所需要的玻璃制品了。
然而,在很难找到花岗岩的大西洋深海海底,居然也发现了许多体积巨大的玻璃块,这真是一件非常奇怪的事。
为了解开这个海底玻璃之谜,英国曼彻斯特大学的科学家们进行了多方面的分析和研究。
首先,这些玻璃块不可能是人工制造以后扔到深海里去的,因为它们的体积巨大,远非人工所能制造。
有些学者认为,这种玻璃的形成,有可能是海底玄武岩受到高压后,同海水中的某些物质发生一种未知的作用,生成了某种胶凝体,从而最终演变为玻璃。如果这种设想属实的话,今后的玻璃生产就可以大大改观了。现在我们制造一块最普通的玻璃,都需要1400~1500℃的高温,而熔化炉所用的耐火材料受到高温玻璃溶液的剧烈侵蚀后,产生有害气体,影响工人的健康。假如能用高压代替高温,将会彻底改变这种状况。
由于这个设想,有些化学家把发现海底玻璃地区的深海底的花岗岩放在实验室的海水匣里,加压至400个大气压力,结果根本没有形成什么玻璃。奇怪的海底玻璃到底是怎样形成的呢?迄今仍然是一个未能解开的自然之谜。
大海的呼唤
 神秘的海声
常常有人用“大海的呼唤”来形容自己激动的心情。这个比喻足以说明大海从来就不是一个平静的事物,它无时不刻不在用声音,向人们提醒它的存在。
大海发出的声音有多种多样,比如波浪翻腾和惊涛拍岸发出的鸣响;大气降水、地震和火山活动引起的喧嚣;鱼类和其他海洋生物发出的声音等等。但有些海鸣的声源至今还是个谜。
在我国广东省湛江硇洲岛的东南海面,每当风暴即将到来时,海面上就会发出一阵阵有节奏的“呜呜呜”的声响。这声音好似闷雷滚动,一高一低,错落有致。当地人对这种声音早就听惯了,但谁也说不清声音来自何方。
 调查与进展
据当地老人说,在很久以前建造硇洲岛国际灯塔的时候,法国人曾在海中沉放一个大水鼓,相当于海况探测报警器,专门做海上天气预报用。它能随时向人们发出风浪异变的信息,这“呜呜呜”的声音就是它发出来的。可是,谁也没看见过那水鼓是什么样子的,更不知道它被放置的具体位置。有关部门曾专门派出船只到硇洲岛东南一带的海域巡视搜索,结果什么也没发现。
1969年,有人曾在这片海域发现过一群海豚在游动,于是当地人认为“呜呜呜”有可能是海豚的嚎叫声,或许是海豚游动过程中相互之间联络的信号。但这种说法也不能令人完全信服,因为在没有海豚活动的地方也有海鸣产生。
1976年,硇洲岛东南海面上的“呜呜呜”的声音比以往减弱了,持“水鼓说”的人认为,这是水鼓年久失修、功能日益减退的结果;持“海豚说”的人则认为,这是近年来人们在这一带海域的活动明显增加,影响了海豚的正常活动和生活,使海豚迁移的结果。
 观点与解惑
笔者认为,这是一种类似于“海市蜃楼”原理一样的回声,是大陆的声音在海中的折射与反射,再混合以远方海浪的声音。再例如,当我们在寂静的夜空下漫步在广阔的草原上,也会听到类似的“呜呜”或“嗡嗡”声,这应该是天地之间所有声音混合发出的一种组合体。当然了,这种声音都不会很大。如果声音相当大,那就另当别论了。
看来,这个谜一时之间还难有结果。

(<-快捷键)上一章

目录

下一章(快捷键->)

目录

阅读设置

背景色:

字体大小: 14px

页面宽度: 1200px

返回顶部